ML/AI Engineer MCP Pack (2025) — Hugging Face, LlamaIndex, Snowflake
• By RouterMCP Team
Experiment, evaluate, and deploy with MCP servers for model catalogs, retrieval, and warehouse AI. Includes quickstarts and evaluation tips.

ML/AI Engineer MCP Pack (2025) — Hugging Face, LlamaIndex, Snowflake
TL;DR: Browse models/datasets (Hugging Face), wire retrieval with LlamaIndex MCP tools, and run SQL/Cortex pipelines in Snowflake — all via one endpoint.
Servers
- Hugging Face MCP (official). https://github.com/huggingface/hf-mcp
- LlamaIndex MCP Toolbox (community). https://github.com/stevengogogo/llamaindex_mcp
- Snowflake MCP (Labs). https://github.com/Snowflake-Labs/sfguide-building-snowflake-mcp-server
Flow
- Pull candidate models and licenses from HF; record decisions.
- Create a retrieval graph with LlamaIndex MCP tools.
- Run batch evaluation or a Cortex function in Snowflake.
Links
- Pack docs: /packs/ml-engineer
- Related posts: Benchmarking (07), Observability (10)
FAQ
Q: Can I run private eval datasets safely?
A: Keep data in‑region and restrict tool egress; see Compliance (12).
Schema
Checklist (fast)
- Intent. 2) Title/meta. 3) Slug. 4) TL;DR. 5) Flow. 6) FAQ. 7) Links. 8) Images/alt. 9) Edit. 10) CTA.
CTA
- Use the template:
examples/packs/ml-engineer.mcp.jsonand the eval harness + retrieval graph starter.